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In the present investigation, the form drag on a bluff body in confined flow is studied.
From the observation of invariance in pressure distribution between a disk and a
flat plate normal to free upstream in unconfined flow, a linear relation linking the
drag to the base pressure is derived when the potential-flow model by Parkinson &
Jandali (J. Fluid Mech., vol. 40, 1970, p. 577) is incorporated. A theoretical wake width
deduced from well-documented experimental data for a disk is proposed such that the
wake Strouhal number is independent of inclination. This width, when combined with
the momentum equation and solved simultaneously with the aforementioned linear
equation, leads to realistic predictions of the drag and the base pressure. The method
is consistent when applied to a cone of arbitrary vertex angle, a circular cylinder
at subcritical Reynolds numbers and a sphere at subcritical as well as supercritical
Reynolds numbers. The case of the inclined disk is also discussed. As the pressure
distribution is invariant under wall constraint, analytical expressions for the effect
of confinement on the loading of bluff bodies are derived and found to provide the
correct trend of experimental data.

1. Introduction
The study of bluff-body flows is an important area of fluid dynamics already

commanding a vast literature. For example, the similarity of wake flow downstream
of two-dimensional bluff bodies has been studied experimentally by Roshko (1954)
and Bearman (1967), among others, through intrinsic parameters such as Strouhal
number, wake width, base pressure and drag. Based on the velocity at separation
and a theoretical wake width from the ‘notched hodograph’ theory, a universal
Strouhal number (about 0.164) was proposed by Roshko (1954). The Kronauer
stability criterion of vortex street led Bearman (1967) to devise a new universal wake
Strouhal number (about 0.181), which allows a theoretical relationship for Strouhal
number, body drag coefficient and base pressure for two-dimensional bluff bodies to
be formulated. While the review by Roshko (1993) is on variations of drag and base
suction on two-dimensional bluff bodies, the article by Bearman (1998) provides recent
advances in bluff-body flows, including a section on the drag reduction by introducing
three-dimensionality. As the flow around two-dimensional bluff bodies has received
much attention, it is concluded in Roshko (1954) that ‘nominally axisymmetric flows
. . . deserve more attention from laboratory and numerical experimenters. Finally, we
must keep in mind the basic problem, to find suitable models for the forces on bluff
bodies’. The present investigation aims to develop along this remark.
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The bluff bodies considered in this study include a disk, a cone of arbitrary apex
angle, a circular cylinder and a sphere. They are chosen partly because they are
canonical and partly because of their numerous practical applications as widely cited
in the literature, such as (i ) turbulence measurements in wind tunnels in Platt (1937),
(ii ) drag reduction on road vehicles in Saunders (1966), (iii ) nuclear reactors working
with spherical fuel elements in Achenbach (1972), (iv ) parachute design in Roberts
(1980), (v ) wind-tunnel design in Macha, Buffington & Henfling (1991) and Summer &
Brundrett (1995), (vi ) shedder design in flow metres in Miau and Liu (1990),
(vii ) reconfiguration subject to wind loading in Schouveiler & Boudaoud (2006),
among others. It is also noted that well-documented experimental data related to
these configurations are available for reference. For instance, Calvert (1967a, 1967b,
1972) measured the Strouhal number of cones of various apex angles, a disk at
different inclinations and a sphere over a range of Reynolds numbers, leading to a
wake Strouhal number (about 0.19).

There have been many computational models reported in the literature on the flow
past the axisymmetric bluff bodies. For a disk, the studies are mainly for the flow at
low Reynolds numbers, such as Masliyah & Epstein (1970) for Reynolds numbers up
to 100 (see its references for earlier studies). Pitter, Pruppacher & Hamielec (1973)
investigated the flow at low and intermediate Reynolds numbers. As for a sphere,
Fornberg (1988) calculated the steady flow at Reynolds numbers up to 5000. More
recently, Tomboulides & Orszag (2000) investigated numerically the transitional and
weak turbulent flow. And, adaptive direct numerical and large-eddy simulations were
used by Hoffman (2006) to compute the drag at a Reynolds number of 104. A
numerical method incorporating some of the ideas from the model by Parkinson &
Jandali (1970) was developed by Bearman & Fackrell (1975) and extended to
axisymmetric bluff bodies in good agreement with measurements. Suitable reference
to Bearman & Fackrell (1975) is made throughout this paper. The present model is
different from that of Bearman & Fackrell (1975) in the following aspects:

(i) The analytical results of Parkinson & Jandali (1970) are used directly without
resorting to the vortex-lattice model in Bearman & Fackrell (1975).

(ii) When the location of flow separation is known, the drag and the base pressure
are determined by solving an equation derived from the similarity of pressure
distributions over the body and the momentum equation by Maskell (1963) with
a suitable characteristic wake width. The method is self-contained in comparison with
Bearman & Fackrell (1975) in which the base pressure is an empirical input.

(iii) The effect of confinement has been incorporated into the present model so
that the drag force can be expressed as a function of blockage ratio.

It is noted that the potential-flow model by Parkinson & Jandali (1970) has been
found useful in studies of bluff-body flows such as in Durbin & Hunt (1980) and
Hunt & Eames (2002). The present model is meant for providing an efficacious
method for predicting the drag without being bewildered by typical shortcomings
of the computational fluid dynamics method such as grid and turbulence-modelling
dependence, the selection criteria of numerical convergence and lengthy computational
time.

2. Disk versus flat plate
Consider a circular disk (i.e. a cone with half-apex angle δ =90◦) of diameter D

placed symmetrically within some rigid boundaries (such as walls of a wind tunnel) of
cross-sectional area At , as shown in figure 1(a). In the presence of a uniform stream



Pressure invariance, wake width and drag prediction of a bluff body 323

D D**

r

x x

y

D**

U

D

δδ

At

Aw

H
U

(b)(a)

Figure 1. Definition sketch for (a) axisymmetric flow past a cone and (b) planar flow
past a wedge.
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Figure 2. Comparison of surface pressure distributions on a disc and a flat plate normal to
unconfined free stream. (a) cp , (b) c ∗

p versus 2r/D or 2y/D. �, Fail et al. (1957); � , Gaster &
Ponsford (1984); × , Bearman & Fackrell (1975) (cpb = − 0.36); - - -, Parkinson & Jandali
(1970) (cpb = − 1.385); ——, (2.2).

of incompressible fluid having density ρ and velocity U normal to the disk, the flow is
considered potentially upstream of the disk edge and outside the shear-layer surface
of characteristic wake width D∗∗, and is also axisymmetric with respect to the x -axis.
The pressure variation on both faces of the disk measured by Fail, Lawford & Eyre
(1957) as a function of dimensionless radial distance 2r/D measured from the disk
centre is depicted in figure 2(a) in terms of the conventional pressure coefficient
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cp . The constant base pressure coefficient cpb is −0.36 (corrected from −0.42 for a
blockage ratio ε =A/At = 1.45 %, where A= πD2/4).

Figure 1(b) defines the chord length D and the characteristic wake width D∗∗ of a
two-dimensional flat plate (i.e. a wedge with half-apex angle δ = 90◦) normal to the
free stream situated midway between two rigid boundaries, distant H apart. Similar
to the disc, the flow on the plate is potentially upstream of separation points at its tips
and outside of the shear layers, but is planar. The chordwise pressure distribution on
both faces of the plate measured by Gaster & Ponsford (1984), as shown in figure 2(a)
with cpb = −1.38 (uncorrected for ε = D/H = 1.3 %), is a function of dimensionless
distance 2y/D measured from the plate centre. The two sets of experimental data
share a similar shape (i.e. cp falling monotonically from its maximum at the frontal
stagnation point and reaching its minimum near separation) but are different in
magnitude.

The bluff-body potential-flow model for a normal flat plate in an unconfined stream
by Parkinson & Jandali (1970) was recently advanced by Yeung & Parkinson (2000)
such that cpb = −1.385 is no longer an empirical input but predicted theoretically. The
value is substantiated by the experimental measurements such as those by Fage &
Johansen (1927), Simmons (1977) and Gaster & Ponsford (1984). The corresponding
pressure distribution is shown in figure 2(a) in comparison with the numerical
prediction on a circular disk by Bearman & Fackrell (1975) in which cpb = −0.36 was
specified empirically from the measurement of Fail et al. (1957). As in Bearman &
Fackrell (1975), symbols are used to depict the computed surface pressure on the disk
in figure 2(a) because they correspond to the locations of discrete vortex rings used
in the vortex-lattice method. It is noted that each theoretical distribution is in good
agreement with the corresponding data.

The experimental data and theoretical predictions in figure 2(a) are found to be
indistinguishable after the conversion to the modified pressure coefficient

c ∗
p =

cp − cpb

1 − cpb

, (2.1)

where individual values of cpb are used, as shown in figure 2(b). Equation (2.1)
may be interpreted as a renormalization under which the pressure distributions of
the disk and the plate become independent of the geometry. It is important to
note that c ∗

p is similar to the one originally proposed by Roshko & Lau (1965) to
collapse the pressure distributions of separated reattaching flow behind a wide range
of two-dimensional fore-bodies onto a single curve. To examine the wake similarity,
Calvert (1967a) proposed a modified pressure coefficient to collapse the static pressure
distributions in the separated-flow region behind cones of various apex angles onto a
similar curve. Nonetheless, the functional forms of these curves were neither discussed
nor explored in their studies. Here, (2.1) is applied to the attached as well as separated
flows. Furthermore, the theoretical curve upstream of separation is

c ∗
p = 1 − m2 (2r/D)2

(m +
√

1 − (2r/D)2)2
, where 0 < r < D/2, (2.2)

which is deduced from Parkinson & Jandali (1970) (see Appendix) with m =1/√
1 − (−1.385), and c ∗

p = 0 downstream of separation for the two different confi-
gurations considered.
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Figure 3. Definition sketch for flow past an inclined disk. (a) Plane view showing inclination
α and wake width D∗∗ on x–y plane, (b) side view showing wake width D∗ on x–z plane,
(c) idealized elliptical cross-section of characteristic wake on y–z plane for α < 90o.

The coefficient of form drag for the disk normal to free stream is defined as

cd =
2Fd

ρU 2A
= 2

∫ D/2

r=0

(cp − cpb)

(
2r

D

)
d

(
2r

D

)
, (2.3)

where Fd is the drag force. With the value of cpb being unknown a priori and upon
substituting (2.1 and 2.2) into (2.3) and carrying out the integration (see Appendix),
the drag coefficient as a function of the base pressure coefficient is

cd = 0.831(1 − cpb). (2.4)

It is comparable to the ‘semi-empirical’ relation cd = 0.827 (1 − cpb) obtained by
Garabedian (1956) for a disk with a cavity wake by using a different formulation.
The corresponding expression for the normal plate, as derived by Yeung (2008), is

cd = 0.897(1 − cpb), (2.5)

which agrees with cd = 0.88(1 + 0.11cpb) − cpb for a cavity model of a bluff plate
obtained by Roshko (1993). To predict cd , another relation linking the drag and base
pressure is sought from the wake dynamics.

From the well-documented measurements on a disk by Calvert (1967b), the
variation of Strouhal number S = f D/U (where f is the vortex shedding frequency)
with inclination α on the x–y plane defined in figure 3(a) is shown in figure 4(a).
When U is replaced by the separation velocity Us = U

√
1 − cpb and D is replaced by

the characteristic wake width on the x–y plane,

D∗∗ =
√

2D
√

1 − cpb(sin α)5/2, (2.6)

the modified Strouhal number S∗∗ = f D∗∗/Us ≈ 0.198 is independent of α. It is worth
noting that

(a) S∗∗ ≈ S∗ = 0.21, where S∗ = f d ′/Us is the wake Strouhal number by Calvert
(1967b) with d ′ being ‘the distance between the two major peaks of the turbulence
profile’,

(b) S∗∗ is independent of cpb as S∗∗ =
√

2 S (sinα)5/2, and
(c) D∗∗ ≈ d ′ in figure 4(b), where D∗∗ is based on the experimental data of cpb and

(2.6).
According to the conservation of momentum by Maskell (1963), the drag coefficient

is

cd = (1 − cpb)
Aw

A
− Aw

A

(
1 − Aw

A

A

At

)−1

, (2.7a)

for a bluff body of reference area A with a downstream effective wake of cross-
sectional area Aw = π(D∗∗)2/4 placed within rigid boundaries, as previously defined
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Figure 4. Effect of inclination α on (a) Strouhal numbers and (b) wake widths for a disc
from Calvert (1967b). � , S; �, S∗; × , S∗∗; � , d ′; �, D∗∗ based on measured cpb and (2.6);
——, (2.6 and 2.13).

in figure 1(a). In the limit (of unconfined flow) that A/At → 0, (2.7a) is reduced to

cd = −cpb

Aw

A
. (2.7b)

It should be noted that Eppler (1954) derived the two-dimensional version of (2.7b).
For a circular disk set at α = 90◦ and Aw = π(D∗∗)2/4,

cd = −cpb(
√

2
√

1 − cpb)
2. (2.8)

Solving (2.4) and (2.8) simultaneously gives two possible solutions: (i ) (cpb, cd) =
(1, 0) and (ii ) (cpb, cd) = (−0.416, 1.18). While the values in (i ) are unrealistic
in bluff-body flow, those in (ii ) are adequate when compared with measurements
of (cpb, cd) = (−0.42, 1.12) (uncorrected for blockage) from Fail et al. (1957) and
(cpb, cd) = (−0.42, 1.18) from Carmody (1964). Other experimental data listed in
table 1 provide further evidence to substantiate the present prediction.

The effect of wall constraint on the pressure distribution of a disk is documented in
figure 5(a) by McKeon & Melbourne (1971) where a series of disks held normal to a
uniform stream were tested at various values of blockage ratio ε = A/At , ranging from
1% to 20 %. Interestingly, (2.1) is also able to collapse the experimental data onto the
theoretical curve represented by (2.2), as shown in figure 5(b), where individual values
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Reference Blockage ratio (%) cpb cd

Hoerner (1965) – −0.42 1.17
Calvert (1967a, 1967b) 0.6 −0.413, −0.364 –
Roos & Willmarth (1971) 1.2 – 1.15–1.28
McKeon & Melbourne (1971) 1 −0.46 1.19
Pucher (1978) 1 −0.51 1.21
Morel et al. (1980) – −0.36 1.12
Roberts (1980) – −0.45 1.2
Macha et al. (1991) – – 1.158–1.168

Table 1. Experimental data for the disk normal to upstream flow.
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Figure 5. Effect of blockage on the pressure distribution of a disk normal to free stream from
McKeon & Melbourne (1971). (a) cp , (b) cp ∗ .�, ε = 1 %; +, 2 %; �, 5 %; × , 10 %; � , 15%;
�, 20%; - - -, (2.2).

of base pressure coefficient are utilized. In other words, the renormalized pressure
distributions are invariant under the blockage effect, and most importantly, (2.4) is
applicable.

From Miau & Liu (1990), the measurements of Strouhal number S = f D/U of a
disk with Reynolds number (Re = ρUD/μ) over 103 � Re � 5 × 104 and 4.1 % �
ε � 29.2 % are given in figure 6(a). Their data are found to be independent of ε

when expressed as modified Strouhal S∗∗ = f D∗∗/Us = 0.176 in figure 6(b), if the
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Figure 6. Variations of Strouhal numbers with Reynolds number (Re) and blockage ratio (ε)
from Miau & Liu (1990). (a) S, (b) S∗∗.�, ε = 4.1%; × , 12.3 %; �, 22.3 %; �, 25.6%; +,
29.2%.

characteristic wake width is

D∗∗ =
√

2D
√

1 − cpb (1 − ε)3 . (2.9)

Substituting Aw/A= 2(1 − cpb)(1 − ε)6 into (2.7a) and combining it with (2.4),

cd = 0.831

(
(1 + 0.831ε) −

√
(1 − 0.831ε)2 − 8ε(1 − ε)6

4ε(1 − ε)6

)
, (2.10)

where the negative root is chosen such that in the limit ε → 0, cd = 1.18 as found
previously. The predicted cd and cpb over 0 <ε < 25 % are plotted in figure 7, depicting
the same trend as the data from McKeon & Melbourne (1971), Pucher (1978), Holst
(1984), Macha et al. (1991) and Sumner & Brundrett (1995).

If the disk is inclined at α < 90◦ in an unconfined flow, (2.4) and the condition of
axisymmetry are no longer valid. The experimental measurements quoted in Hoerner
(1965), however, indicate that over 45◦ � α � 90◦, the normal force coefficient of the
disk remains approximately constant. With the numerical constant found by the
present method at α =90◦, it is appropriate to claim

cd = 1.18 sinα, (2.11)

without resorting to investigation of the pressure distribution on an inclined disk.
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normal disk. �, McKeon & Melbourne (1971); �, Pucher (1978); +, Holst (1984); �, Macha
et al. (1991); × , Sumner & Brundrett (1995); ——, (2.10); – – – , (2.4 and 2.10).

The aforementioned wake width d ′ in figure 4(b) was obtained by Calvert (1967b)
from the traverse of a hot wire in the y direction (defined in figure 3a) with x values
chosen such that the static pressure reaches minimum. In the absence of axisymmetry,
the wake width measured in any other plane is expected to differ from d ′ and ‘thus the
value of S∗ will be different’, according to Calvert (1967b). To idealize the wake shape
for the present model, the cross-section of the characteristic wake on the y–z plane is
conjectured to be an ellipse (see figure 3c), having D∗∗ from (2.6) as the length of its
minor axis in the x–y plane and D∗ as that of its major axis in the x–z plane defined
in figure 3(b). The shape of the inclined disk projected on the y–z plane is also an
ellipse having D sinα and D as the lengths of minor and major axes, respectively. If
the two ellipses on the y–z plane are ‘similar’ in shape, or D∗∗/D∗ = D sinα/D, then

D∗ =
√

2D
√

1 − cpb(sin α)3/2. (2.12)

Substituting Aw = πD∗∗D∗/4 and A= πD2 sinα/4 into (2.7b) and solving it with (2.11),

cpb =
1 −

√
1 + 2(1.18)/ sin2 α

2
, (2.13)

where the positive root is ignored because it corresponds to a negative drag, being
physically inadmissible. The prediction of the base pressure from (2.13) is shown in
figure 8 in appropriate agreement with experimental data from Calvert (1967a, 1967b)
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Figure 8. Correlation of base pressure coefficient with inclination for a disk. �, Calvert
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where 50◦ � α � 90◦. Note that two different values of cpb for a disk at α = 90◦ are
found in Calvert (1967a, 1967b), respectively, as indicated in table 1 as well as in figure
8. In addition, D∗∗ based on cpb from (2.13) agrees with d ′ from Calvert (1967b), as
shown in figure 4(b). The results in figures 4(b) and 8 also reflect that the conjecture
of the wake shape and the method of selecting D∗ are suitable.

3. Cone versus wedge
The axisymmetric flow past a cone of base diameter D and planar flow past a

wedge of base thickness D, each having a half-apex angle δ, as defined in figure 1,
are considered next. As demonstrated in Yeung & Parkinson (2000), the measured
vortex-shedding frequency f from Simmons (1977) for wedges in unconfined flow
with 10◦ � δ � 90◦ becomes independent of δ when non-dimensionalized using

D∗∗ = D
√

1 − cpb(1 − 0.16 − 0.16 sin(2δ + π/2)) (3.1)

and velocity at separation, Us = U
√

1 − cpb to form the modified Strouhal numbers
S∗∗ = f D∗∗/Us ≈ 0.161. For cones over 10◦ � δ � 90◦, the measured variations of
S = f D/U and S∗ = f d ′/Us ≈ 0.19 (where d ′ is the measured characteristic wake
width) from Calvert (1976a) are compared with S∗∗ = f D∗∗/Us ≈ 0.184 in figure 9(a),
where

D∗∗ =
√

2D
√

1 − cpb(1 − 0.19 − 0.19 sin(2δ + π/2)). (3.2)

Figure 9(b) clearly indicates that D∗∗ ≈ d ′. Substituting Aw/A= (D∗∗/D)2 into (2.7b),

cd = −2cpb(1 − cpb)(1 − 0.19 − 0.19 sin(2δ + π/2))2. (3.3)

Since the experimental measurements of pressure distribution for incompressible
flow past a cone are rarely reported in the literature, it is not possible to demonstrate
the invariance of pressure distributions between the wedges and the cones here.
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However, if such invariance exists, a linear equation linking the base pressure and
form drag coefficients can be established as

cd = (1 − cpb)F (δ), (3.4)

where F (δ) is a function of δ for cones (see figure 10a) by using the potential-flow
model for wedges of arbitrary δ developed by Yeung & Parkinson (2000). Solutions
of (−cpb, cd) obtained by solving (3.3) and (3.4) are compared with data from Calvert
(1976a) and Hoerner (1965) for a range of δ in figure 10(b). Following (2.9), a
characteristic wake width including the blockage effect is

D∗∗ =
√

2D
√

1 − cpb(1 − 0.19 − 0.19 sin(2δ + π/2))(1 − ε)3. (3.5)

By combining (2.7a), (3.4) and (3.5), variations of the drag coefficient as functions of
the blockage ratio for δ = 10◦, 30◦ and 60◦ are shown in figure 10(c), indicating that
the effect of blockage is almost negligible when δ � 10◦.

4. Sphere versus cylinder
4.1. Subcritical flow region

Consider a sphere and a circular cylinder, each of diameter D, approached by a
uniform flow, as shown in figure 11, where angle β is measured from the frontal
stagnation point. It is well known that the angular location of flow separation
βs and the base pressure cpb are strongly influenced by the Reynolds number.
Figure 12(a) compares the measured pressure distributions in terms of cp on a
sphere by Fage (1937) at Re = 1.57 × 105 and on a circular cylinder by Roshko (1954)
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at Re = 1.45 × 104, representing the typical subcritical Reynolds numbers in which
laminar boundary layer separation takes place nearly at βs =80◦. The base pressure
of the sphere (cpb = −0.4) is less negative than that of the cylinder (cpb = −0.94). The
theoretical pressure distribution on a circular cylinder with βs = 80◦ and cpb = −0.938
(see the Discussion section for the detailed calculation) is compared with the
numerical prediction on a sphere from Bearman & Fackrell (1975) with βs = 80◦

and cpb = − 0.4 (provided by experiment) in figure 12(b). Again, symbols are used to
depict the computed surface pressure by Bearman & Fackrell (1975) on the sphere in
figure 12(b) because they correspond to the locations of discrete vortex rings used in
their numerical method.
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Under the transformation in (2.1), the distributions in figure 12(a, b) are collapsed
onto

c ∗
p =

⎧⎨
⎩1 − sin2 θ(1 − 2 cosαs cos θ + cos2 αs)

2

m2 (cos δ − cos θ )2
αs � θ < 180◦,

0 0 � θ � αs,

(4.1)

which was modified from Parkinson & Jandali (1970) for a circular cylinder
with βs = 80◦, m =1/

√
1 − (−0.938), αs = (180◦ − βs)/2, sinβ = cos αs sin θ(secαs −

cos θ)/[(sec αs+cos αs)/2−cos θ] and cos δ = cosαs+m sin3 αs , as shown in figure 12(c).
Making use of (2.1), the coefficient of form drag for the sphere becomes

cd = 2

∫ π

β=0

cp cos β sinβdβ = (1 − cpb)

∫ βs

β=0

c ∗
p sin 2β dβ, (4.2)

where cpb is considered as an unknown. By carrying out the integration and by using
(4.1), it is found that

cd = 0.317(1 − cpb). (4.3)

Möller (1938) is usually quoted as the earliest to realize that two Strouhal numbers
exist in the wake of a sphere when the Reynolds number falls in the range of
103 < Re < 104. It is the lower value S =0.188 that is reported by Calvert (1972)
together with cpb = − 0.35 in 2 × 104 <Re < 6 × 104. Based on the maximum wake
width measured (d ′ = 1.12D) and the velocity outside the wake (Us ≈ 1.09U ), a wake
Strouhal number S∗ of 0.193 was thus obtained. As elaborated in the Discussion,
D∗∗ = (S∗/S)

√
1 − cpbD sinβs is proposed for the circular cylinder. Realizing S∗/S ≈ 1,

a characteristic wake width for the sphere is proposed as

D∗∗ =
√

1 − cpbD sinβs, (4.4)

where D sinβs is interpreted as the projected diameter of the sphere. By substituting
Aw = π(D∗∗)2/4 into (2.7b),

cd = −cpb(1 − cpb) sin2 βs. (4.5)

The experimental data from Flachsbart (1927), Fage (1937), Maxworthy (1969)
and Achenbach (1972) in figure 13(a) are reasonably close to the solution
(cpb, cd) = (−0.33, 0.42) from solving (4.3) and (4.5) with the discrepancy attributed
to the fact that (2.7a) does not include frictional drag.

Maxworthy (1969) studied the effect of confinement on the pressure distribution
of a sphere with laminar separation. Figure 14(a) compares the cp distributions at
area blockage ratio ε = 5 % and 25 % where Re ≈ 2 × 105. After the conversion to
c ∗
p , both distributions are reasonably represented by the curve from (4.1), as shown

in figure 14(b), indicating the existence of similarity in pressure distributions under
the influence from blockage effect.

To the author’s knowledge, experimental data of Strouhal number for a sphere in
the presence of confinement are scarce in the literature. To identify the characteristic
wake width, experimental data for a flat plate, a circular cylinder and a disk are
considered. The data of S in figure 15(a) from Shaw (1971) for a normal flat plate
become approximately independent of blockage ratio ε when expressed as

S∗∗ = S(1 − ε)3/2. (4.6)

Additional comparisons with data from other sources to deduce (4.6) are available in
Yeung (2008). The corresponding expression for the data in figure 15(b) from Richter
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Figure 13. Predictions of base pressure and drag coefficients for a sphere. (a) subcritical
(βs = 80deg), ——, (4.3); (b) supercritical (βs = 115deg), ——, (4.11). �, Flachbart (1927); × :
Fage (1937); �, Maxworthy (1969); �, Achenbach (1972); – – –, (4.5); - - -, (5.3).

and Naudascher (1976) for a circular cylinder at 104 < Re < 105 is

S∗∗ =
0.16 sin 80◦

0.2
S(1 − ε), (4.7)

where 0.2 is assumed to be the Strouhal number when ε = 0, 0.16 is the universal
Strouhal number by Roshko (1954) and βs = 80◦. From figure 6, it is found that for
a disk,

S∗∗ =
√

2S(1 − ε)3. (4.8)

While a flat plate and a disk have flat surfaces, those of a circular cylinder and a
sphere are curved. Based on the similar functional dependence of (1−ε) in (4.6)–(4.8),
it is conjectured that the confinement effect on flat surfaces is ‘similar’ to that on
curved surfaces. That is, the change of exponents in (1 − ε) from the flow past a plate
to the flow past a disk is ‘equal’ to the corresponding change from the flow past a
cylinder to the flow past a sphere: 3 − 3/2 = n − 1 or n= 5/2 where n is the exponent
of (1 − ε) for the sphere. Incorporating it into (4.4),

D∗∗ =
√

1 − cpbD sinβs(1 − ε)5/2. (4.9)

Substituting Aw/A= (D∗∗/D)2 into (2.7a) and solving it with (4.3),

cd = 0.317

(
(1 + 0.317ε) −

√
(1 + 0.317ε)2 − 4ε(0.317 + sin2 βs(1 − ε)5)

2ε sin2 βs(1 − ε)5

)
. (4.10)



336 W. W. H. Yeung

0.5

0

0 50 100 150 200

0 50 100

β (deg)

150 200

cp –0.5

–1.0

–1.5

–2.0

1.0

0.8

0.6

cp
* 0.4

0.2

0

–0.2

1.0(b)

(a)
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Maxworthy (1969). (a) cp versus β; (b) c ∗

p versus β . •, ε = 5 %; +, 25 %; ——, (4.1).

A comparison is made in figure 16 between experimental data from Maxworthy
(1969), Achenbach (1974) and Awbi & Tan (1981) and the prediction from (4.10),
substantiating the choice of the exponent deduced from similarity as proposed.

4.2. Supercritical flow region

For the case with turbulent boundary layer separation, the data from Achenbach
(1972) on a sphere at Re = 1.14 × 106 and that from Achenbach (1968) on a circular
cylinder at Re = 3.6 × 106 are compared in figure 17(a). While the angle of separation
is approximately βs =115◦ in each case, it is found that (cpb, cd) = (−0.2, 0.15) for the
sphere but (cpb, cd) = (−0.85, 0.75) for the cylinder. It is noted that for the cylinder,

the base pressure may be accurately calculated from cpb =1 − (9/4) sin2 βs , which
corresponds to satisfying the criterion of finite streamline curvature at separation
found in Parkinson & Jandali (1970). As shown, the theoretical pressure distribution
from Parkinson & Jandali (1970) agrees with the experimental data for the circular
cylinder but differs from that of the sphere. To avoid the effect of a separation bubble
on the pressure distribution, the data from Fage (1937) for a sphere at Re = 1.1 × 105

(and the corresponding numerical prediction from Bearman & Fackrell (1975)) are not
used for comparison. When expressed in terms of c ∗

p , the experimental distributions
are in satisfactory agreement with the theoretical curve (obtained from (4.1) with
m =1/

√
1 − (−0.85) and βs = 115◦) in figure 17(b). From (4.2),

cd = 0.125(1 − cpb). (4.11)

If the characteristic wake width in (4.4) is still valid with βs = 115◦, then the solution
of (4.5) and (4.11) is (cpb, cd) = (−0.15, 0.144) in reasonable agreement with the data
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from Achenbach (1972), as shown in figure 13(b). The equation of drag as a function
of blockage ratio can be easily obtained by replacing 0.317 in (4.10) by 0.125, which
is the numerical constant in (4.11).

5. Discussion
The linear relation between the base pressure and the drag coefficients in (2.4)

is derived under the assumption that the pressure distribution on the disk is
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axisymmetric. Interestingly, it is not much different from cd =0.837 (1−cpb) for square
plates (where the pressure distribution is not axisymmetric) deduced by Maskell (1963)
from the experimental data over a wide range of conditions. Therefore, it agrees with
Fail et al. (1957) that ‘large changes in the shape of low-aspect-ratio plates have very
small effects on the aerodynamic characteristics’. In addition, (2.4) and (2.5)

(a) provide the correct limits theoretically to the experimental data from Fail et al.
(1957) for rectangular plates at aspect ratio 1 � AR < ∞ in figure 18(a),

(b) describe the correct trend of experimental data on square plates from Bearman
(1971) and a square prism normal to free stream from Lee (1975) in turbulent flow
in figure 18(b) and

(c) are applicable to the data from Apelt & West (1975) for a flat plate with a
wake splitter plate in figure 18(c).
As such, the present method may be suitable for estimating the drag on these bluff
bodies.

In Yeung (2008), the momentum equation by Maskell (1963) was modified to
study the two-dimensional flow around an inclined flat plate in confined flow.
After combining it with another equation derived from the potential flow model
by Parkinson & Jandali (1970), cpb may be determined by a nonlinear equation
numerically. For the inclined disk in unconfined flow considered here, the equation
from Parkinson & Jandali (1970) cannot be used. Instead, the experimental
measurements which are documented in Hoerner (1965) prove to be useful. It is
shown here that cpb may be determined by solving a quadratic equation.
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The confined flow past a circular cylinder at subcritical Reynolds numbers was also
considered in Yeung (2008). The base pressure coefficient and the location of flow
separation are assumed to be (cpb, βs) = (−0.96, 80◦), which are the measurements
of Roshko (1954) used by Parkinson & Jandali (1970). An attempt is made here to
eliminate the empirical input, namely cpb. As elucidated in Parkinson & Jandali (1970),
theoretical models for flows past bluff bodies include some empiricism because of the
complexity of the wake dynamics. For the flow past a circular cylinder, the angle of
flow separation βs and the base pressure cpb are such parameters in the model obtained

from experiments. Based on the separation velocity U
√

1 − cpb and the wake width
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Figure 19. Relations between base pressure and drag coefficients for a circular cylinder at
subcritical flow region. ——, (4.8) from Parkinson & Jandali (1970) (βs = 80deg); – – –, (5.1);
- - -, (5.2); �: solution of (4.8) from Parkinson & Jandali (1970) and (5.1); �: solution of (4.8)
from Parkinson & Jandali (1970) and (5.2).

d ′ from a modified Kirchhoff’s free streamline model, a universal Strouhal number
S∗ = Sd ′/(D

√
1 − cpb) ≈ 0.16 for all cylinders was proposed by Roshko (1954). If the

characteristic wake width is assumed to be D∗∗ = d ′ sin βs , then from (2.7b)

cd = −cpb

S∗

S

√
1 − cpb sinβs. (5.1)

From Roshko (1954), S ≈ 0.2 at Re = 1.49 × 104, a typical subcritical Reynolds num-
ber. Another expression of drag can be obtained from integrating the pressure distri-
bution to give cd = 2

∫ π

β = 0
cp cos β dβ or use (4.8) from Parkinson & Jandali (1970).

The solution of (5.1) and (4.8) from Parkinson & Jandali (1970) is depicted in figure 19
at (cpb, cd) = (−0.938, 1.03), given βs = 80◦. If D∗∗ = d ′ instead, then from (2.7b)

cd = −cpb

S∗
S

√
1 − cpb. (5.2)

The solution of (5.2) and (4.8) from Parkinson & Jandali (1970) is shown in
figure 19 at (cpb, cd) = (−0.905, 1.0), which is less accurate when compared with
(cpb, cd) = (−0.94, 1.15) from the measurements by Roshko (1954). Therefore, if the
proposed theoretical wake width is suitable, then only the angle of flow separation
is needed in the model by Parkinson & Jandali (1970) for the subcritical flow
past the circular cylinder. Incidentally, from the measurements of Roshko (1961)
at Re = 8.4 × 106 (i.e. trans-critical), (cpb, cd) = (−0.86, 0.70). With βs ≈ 104◦ deduced
from the measured pressure distribution, (5.1) predicts S = 0.26, which is reasonable
when compared with the measured value of S = 0.267.

The experimental studies of blockage effect on the Strouhal number for two-
dimensional bluff bodies have been well documented. However, a theoretical
prediction of its variation in confined flow is not available in the literature. Therefore,
the present method makes use of the experimental measurements for the normal disk
to establish the characteristic wake width such as (2.9). Here, the continuity equation
is first used to deduce the important parameter (1 − ε) for blocked flow. Only its
exponent is to be determined next. Interestingly, this simple functional dependence,
namely (1 − ε)n, where n depends on the geometry, leads to realistic results for the
variety of bluff bodies considered. Furthermore, experimental studies of blockage
effect on the Strouhal number for three-dimensional bodies are limited. It has been
shown in the present study that the data for the flat-plate circular cylinder and the
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disk can be used to deduce the theoretical wake width for the sphere such that the
form drag on a sphere in confined flow can be determined. Based on potential flow,
Hoerner (1965) developed an expression,

cd =
2

9
(1 − cpb)

2, (5.3)

for determining the sphere drag based on a single point measurement of base pressure
(see Platt 1937 for derivation). Good correlation with experimental data is also quoted
therein. The solution from solving (4.3) and (5.3) is in reasonable agreement with
experimental data shown in figure 13(a) at subcritical Reynolds numbers but the base
pressure from (4.11) and (5.3) is more positive than those from the measurements by
Fage (1937) and Achenbach (1972) in figure 13(b) at supercritical Reynolds numbers.
As the blockage ratio is not involved explicitly in (5.3), it is not obvious if (5.3) is
applicable to confined flow.

6. Conclusion
A simple method is presented to calculate the drag and the base pressure on

a bluff body such as a disk, a cone, a circular cylinder and a sphere in confined
flow. It is based on (i ) the invariance of pressure distribution, (ii ) the potential-flow
model by Parkinson & Jandali (1970), (iii ) a characteristic wake width and (iv ) the
momentum equation by Maskell (1963). Analytical expressions for the drag as a
function of the blockage ratio have been derived. For the disk and the cone, the
model is self-contained. For the sphere, the drag and the base pressure depend on
the location of flow separation. In general, the prediction is in reasonable agreement
with experimental data. A characteristic wake width based on the universal Strouhal
number by Roshko (1954) is proposed for the subcritical flow past a circular cylinder
such that the base pressure in the potential-flow model is no longer an empirical input
but determined theoretically. The Strouhal number obtained from the momentum
equation and this characteristic wake width are consistent with the measurement by
Roshko (1961) for trans-critical flow. The method presented here may be applied
to other two-dimensional and axisymmetric bluff bodies as long as they are of
comparable bluffness and they are associated with a broad wake downstream of
separation such that the pressure drag dominates.

The author would like to dedicate this paper to the memory of Professor Geoffrey
Parkinson (1924–2005) and thank the referees for their comments.

Appendix
According to (3.6) of Parkinson & Jandali (1970), the pressure distribution on a

normal flat plate is given by

cp = 1 − sin2 θ

(cos δ − cos θ)2
, (A 1)

where 2y = D sin θ and cos δ = 1/
√

1 − cpb. For unconfined flow, Yeung & Parkinson
(2000) found that cpb = −1.385. On the wetted surface, π/2 <θ < π, so cos θ =

−
√

1 − sin2 θ . Substituting (A1) into (2.1),

c ∗
p = 1 − m2Z2

(m +
√

1 − Z2)2
, (A 2)
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where Z = 2y/D and m =1
/√

1 − (−1.385). The drag coefficient is

cd =
2

D

∫ D/2

y=0

(cp − cpb) dy = (1 − cpb)

∫ 1

Z=0

cp dZ. (A 3)

Integration gives∫ 1

Z = 0

(
1 − m2Z2

(m +
√

1 − Z2)2

)
dZ =2m2 − m3π + 1 +

m2(2m2 − 1)√
1 − m2

× tanh−1
√

1 − m2 = 0.8967.

The drag coefficient for the disk is

cd = 2 (1 − cpb)

∫ D/2

r=0

c∗
p

(
2r

D

)
d

(
2r

D

)
. (A 4)

Substituting (A2) and Z = 2r/D into (A 4),

cd = 2 (1 − cpb)

∫ 1

Z=0

c ∗
p ZdZ. (A 5)

Integration gives∫ 1

z = 0

[
Z − m2Z3

(m +
√

1 − Z2)

]
dZ =

1

2
− 3m3 +

3m2

2
− (1 − 3m2)m2 ln

(
m + 1

m

)
= 0.8308.
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